
Geospatial Big Data Handling with High Performance 

Computing: Current Approaches and Future Directions 

Zhenlong Li 

Geoinformation and Big Data Research Laboratory, Department of 

Geography, University of South Carolina, Columbia, South Carolina 

zhenlong@sc.edu 

 

Abstract:  Geospatial big data plays a major role in the era of big data, as 

most data today are inherently spatial, collected with ubiquitous location-

aware sensors. Efficiently collecting, managing, storing, and analyzing 

geospatial data streams enables development of new decision-support systems 

and provides unprecedented opportunities for business, science, and 

engineering. However, handling the "Vs" (volume, variety, velocity, veracity, 

and value) of big data is a challenging task. This is especially true for 

geospatial big data, since the massive datasets must be analyzed in the context 

of space and time. High performance computing (HPC) provides an essential 

solution to geospatial big data challenges. This chapter first summarizes four 

key aspects for handling geospatial big data with HPC and then briefly 

reviews existing HPC-related platforms and tools for geospatial big data 

processing. Lastly, future research directions in using HPC for geospatial big 

data handling are discussed.  
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1. Introduction 

Huge quantities of data are being generated across a broad range of 

domains, including banking, marketing, health, telecommunications, 

homeland security, computer networks, e-commerce, and scientific 

observations and simulations. These data are called big data. While there 

is no consensus on the definition of big data (Ward and Barker, 2013; De 

Mauro et al., 2015), one widely used definition is: “datasets whose size is 

beyond the ability of typical database software tools to capture, store, 

manage, and analyze” (Manyika et al., 2011, p.1).   

Geospatial big data refers to a specific type of big data that contains 

location information. Location information plays a significant role in the 

big data era, as most data today are inherently spatial, collected with 

ubiquitous location-aware sensors such as satellites, GPS, and 

environmental observations. Geospatial big data offers great opportunities 

for advancing scientific discoveries across a broad range of fields, 

including climate science, disaster management, public health, precision 

agriculture, and smart cities. However, what matters is not the big data 

itself but the ability to efficiently and promptly extract meaningful 

information from it, an aspect reflected in the widely used big data 

definition provided above. Efficiently extracting such meaningful 

information and patterns is challenging due to big data’s 5-V 

characteristics—volume, velocity, variety, veracity, value (Zikopoulos and 

Eaton, 2011; Zikopoulos et al., 2012; Gudivada et al., 2015) —and 

geospatial data’s intrinsic feature of space and time. Volume refers to the 

large amounts of data being generated. Velocity indicates the high speed of 

data streams and that accumulation exceeds traditional settings. Variety 

refers to the high heterogeneity of data, such as different data sources, 

formats, and types. Veracity refers to the uncertainty and poor quality of 

data, including low accuracy, bias, and misinformation. For geospatial big 

data, these four Vs must be handled in the context of dynamic space and 

time to extract the ‘value’ from big data, which creates further challenges.  

High performance computing (HPC) provides an essential solution to 

geospatial big data challenges by allowing fast processing of massive data 

collections in parallel. Handing geospatial big data with HPC can help us 
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make quick and better decisions in time-sensitive situations, such as 

emergency response (Bhangale et al., 2016). It also helps us to solve larger 

problems, such as high-resolution global forest cover change mapping in 

reasonable timeframes (Hansen et al., 2013) and to achieve interactive 

analysis and visualization of big data (Yin et al., 2017). 

This chapter explores how HPC is used to handle geospatial big data. 

Section 2 first summarizes four typical sources of geospatial big data. 

Section 3 describes the four key components, including data storage and 

management (section 3.1), spatial indexing (section 3.2), domain 

decomposition (3.3), and task scheduling (section 3.4). Section 4 briefly 

reviews existing HPC-enabled geospatial big data handling platforms and 

tools, which are summarized into four categories: general-purpose (section 

4.1), geospatial-oriented (section 4.2), query processing (section 4.3), and 

workflow-based (section 4.4). Three future research directions for 

handling geospatial big data with HPC are suggested in section 5, 

including working towards a discrete global grid system (section 5.1), fog 

computing (section 5.2), and geospatial artificial intelligence (section 5.3). 

Lastly, section 6 summarizes the chapter.   

2. Sources of Geospatial Big Data 

Four typical sources of geospatial big data are summarized below. 

 Earth observations 

Earth observation systems generate massive volumes of disparate, 

dynamic, and geographically distributed geospatial data with in-situ and 

remote sensors. Remote sensing, with its increasingly higher spatial, 

temporal, and spectral resolutions, is one primary approach for collecting 

Earth observation data on a global scale. The Landsat archive, for 

example, exceeded one petabyte and contained over 5.5 million images 

several years ago (Wulder et al., 2016; Camara et al., 2016). As of 2014, 

NASA’s Earth Observing System Data and Information System (EOSDIS) 

was managing more than nine petabytes of data, and it is adding about 6.4 

terabytes to its archives every day (Blumenfeld, 2019). In recent years, the 

wide use of drone-based remote sensing has opened another channel for 

big Earth observation data collection (Athanasis et al., 2018).   
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 Geoscience model simulations 

The rapid advancement of computing power allows us to model and 

simulate Earth phenomena with increasingly higher spatiotemporal 

resolution and greater spatiotemporal coverage, producing huge amounts 

of simulated geospatial data. A typical example is the climate model 

simulations conducted by the Intergovernmental Panel on Climate Change 

(IPCC). The IPCC Fifth Assessment Report (AR5) alone produced ten 

petabytes of simulated climate data, and the next IPCC report is estimated 

to produce hundreds of petabytes (Yang et al., 2017; Schnase et al., 2017). 

Beside simulations, the process of calibrating the geoscience models also 

produces large amounts of geospatial data, since a model often must be run 

many times to sweep different parameters (Murphy et al., 2014). When 

calibrating ModelE (a climate model from NASA), for example, three 

terabytes of climate data were generated from 300 model-runs in just one 

experiment (Li et al., 2015). 

 Internet of Things 

The term Internet of Things (IoT) was first coined by Kevin Ashton in 

1999 in the context of using radio frequency identification (RFID) for 

supply chain management (Ashton, 2009). Simply speaking, the IoT 

connects “things” to the internet and allows them to communicate and 

interact with one another, forming a vast network of connected things. The 

things include devices and objects such as sensors, cellphones, vehicles, 

appliances, and medical devices, to name a few. These things, coupled 

with now-ubiquitous location-based sensors, are generating massive 

amounts of geospatial data. In contrast to Earth observations and model 

simulations that produce structured multi-dimensional geospatial data, IoT 

continuously generates unstructured or semi-structured geospatial data 

streams across the globe, which are more dynamic, heterogeneous, and 

noisy. 

 Volunteered geographic information 

Volunteered geographic information (VGI) refers to the creation and 

dissemination of geographic information from the public, a process in 

which citizens are regarded as sensors moving “freely” over the surface of 
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the Earth (Goodchild, 2017). Enabled by the internet, Web 2.0, GPS, and 

smartphone technologies, massive amounts of location-based data are 

being generated and disseminated by billions of citizen sensors inhabiting 

the world. Through geotagging (location sharing), for example, social 

media platforms such as Twitter, Facebook, Instagram, and Flickr provide 

environments for digital interactions among millions of people in the 

virtual space while leaving “digital footprints” in the physical space. For 

example, about 500 million tweets are sent per day according to Internet 

Live Stats (2019); assuming the estimated 1% geotagging rate (Marciniec, 

2017), five million tweets are geotagged daily.  

3. Key Components of Geospatial Big Data Handling with HPC 

3.1 Data storage and management 

Data storage and management is essential for any data manipulation 

system, and it is especially challenging when handling geospatial big data 

with HPC for two reasons. First, the massive volumes of data require large 

and reliable data storage. Traditional storage and protective fault-tolerance 

mechanisms, such as RAID (redundant array of independent disks), cannot 

efficiently handle data at the petabyte scale (Robinson, 2012). Second, the 

fast velocity of the data requires storage with flexibility to scale up or out 

to handle the ever-increasing storage demands (Katal et al., 2013).  

There are three common types of data storage paradigms in HPC: shared-

everything architecture (SEA), shared-disk architecture (SDA), and 

shared-nothing architecture (SNA) (Figure 1). With SEA, data storage and 

processing are often backed by a single high-end computer. The 

parallelization is typically achieved with multi-cores or graphics 

processing units (GPUs) accessing data from local disks. The storage of 

SEA is limited to a single computer and thus cannot efficiently handle big 

data.  

SDA is a traditional HPC data storage architecture that stores data in a 

shared system that can be accessed by a cluster of computers in parallel 

over the network. Coupled with the message passing interface (MPI) 

(Gropp et al., 1996), the SDA-based HPC enables data to be transferred 

from storage to the compute nodes and processed in parallel. Most 
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computing-intensive geospatial applications used it prior to the big data 

era. However, SDA does not work well with big data, as transferring large 

amounts of data over the network quickly creates a bottleneck in the 

system (Yin et al., 2013). In addition, the shared disk is prone to become 

the single point failure of the system.   

Shared-nothing architecture (SNA) is not a new paradigm. Stonebraker 

pointed out in 1986 that shared-nothing was a preferred approach in 

developing multiprocessor systems at that time. With SNA, the data are 

distributedly stored on the cluster computers, each locally storing a subset 

of the data. SNA has become the de facto big data storage architecture 

nowadays because: (1) it is scalable, as new compute nodes can be easily 

added to an HPC cluster to increase its storage and computing capacity, (2) 

each data subset can be processed locally by the computer storing it, 

significantly reducing data transmission over the network, and (3) the 

single point failure is eliminated since the computers are independent and 

share no centralized storage.  

 

Figure 1. Illustration of different data storage architectures in HPC systems 

One popular implementation of SNA is the Hadoop Distributed File 

System (HDFS) (Shvachko et al., 2010) —the core storage system for the 

Hadoop ecosystem. HDFS splits data into blocks and stores them across 

different compute nodes in a Hadoop cluster, so they can be processed in 

parallel. Like HDFS, most NoSQL (not only SQL) databases—including 

HBase (Vora, 2011), MongoDB (Abramova and Bernardino, 2013), and 

Google BigTable (Chang et al., 2008)—adopt SNA to store and manage 

big unstructured or semi-structured data. Since HDFS and NoSQL 

databases are not designed to store and manage geospatial data, many 
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studies have been conducted to modify or extend these systems by 

integrating the spatial dimension (e.g., Wang et al., 2013; Zhang et al., 

2014; Eldawy and Mokbel, 2015). Because the access patterns of a 

geospatial data partition (or block) are strongly linked to its neighboring 

partitions, co-locating the partitions that are spatially close with each other 

to a same computer node often improves data access efficiency in SNA 

(Fahmy, Elghandour, Nagi, 2016; Baumann et al., 2018).  

3.2 Spatial indexing 

With HPC, many processing units must concurrently retrieve different 

pieces of the data to perform various data processing and spatial analysis 

in parallel (e.g., clipping, road network analysis, remote sensing image 

classification). Spatial indexing is used to quickly locate and access the 

needed data, such as specific image tiles for raster data or specific 

geometries for vector data, from a massive dataset. Since the performance 

of the spatial index determines the efficiency of concurrent spatial data 

visits (Zhao et al., 2016), it directly impacts the performance of parallel 

data processing.  

Most spatial indexes are based on tree data structures, such as the quadtree 

(Samet 1984), KD-tree (Ooi, 1987), R-tree (Guttman, 1984), and their 

variants. Quadtree recursively divides a two-dimensional space into four 

quadrants based on the maximum data capacity of each leaf cell (e.g., the 

maximum number of points allowed). A KD-tree is a binary tree often 

used for efficient nearest-neighbor search. An R-tree is similar to a KD-

tree, but it handles not only point data but also rectangles such as geometry 

bounding boxes. As a result, R-trees and their variants have been widely 

used for spatial indexing (e.g., Xia et al., 2014; Wang et al., 2013). 

Especially focusing on geospatial big data, He et al. (2015) introduced a 

spatiotemporal indexing method based on decomposition tree raster data 

indexing for parallel access of big multidimensional movement data. 

SpatialHadoop uses an R-tree-based, two-level (global and local) spatial 

indexing mechanism to manage vector data (Eldawy and Mokbel, 2015) 

and a quadtree-based approach to index raster data (Eldawy et al., 2015).  
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The ability to store and process big data in its native formats is important 

because converting vast amounts of data to other formats requires effort 

and time. However, most indexing approaches for handling geospatial big 

data in an HPC environment (such as Hadoop) require data conversion or 

preprocessing. To tackle this challenge, Li et al. (2017) proposed a 

spatiotemporal indexing approach (SIA) to store and manage massive 

climate datasets in HDFS in their native formats (Figure 2). By linking the 

physical location information of node, file, and byte to the logical 

spatiotemporal information of variable, time, and space, a specific climate 

variable at a specific time, for example, can be quickly located and 

retrieved from terabytes of climate data at the byte level. The SIA 

approach has been extended to support other array-based datasets and 

distributed computing systems. For example, it was adopted by the 

National Aeronautics and Space Administration (NASA) as one of the key 

technologies in its Data Analytics and Storage System (DAAS) (Duffy et 

al., 2016). Based on SIA, Fu et al. (2018) developed an in-memory 

distributed computing framework for big climate data using Apache Spark 

(Zaharia et al., 2016). Following a concept similar to SIA, Li et al. (2018) 

developed a tile-based spatial index to handle large-scale LiDAR (light 

detection and ranging) point-cloud data in HDFS in their native LAS 

formats.  

 

Figure 2. Illustration of the spatiotemporal indexing approach (Li et al., 

2017) 

3.3 Domain decomposition 
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Taking a divide-and-conquer approach, HPC first divides a big problem 

into concurrent small problems and then process them in parallel using 

multiple processing units (Ding and Densham, 1996). This procedure is 

called decomposition. Based on the problem to be solved, the 

decomposition will take one of three forms: domain decomposition, 

function decomposition, or both. Domain decomposition treats the data to 

be processed as the problem and decomposes them into many small 

datasets. Parallel operations are then performed on the decomposed data. 

Function decomposition, on the other hand, focuses on the computation, 

dividing the big computation problem (e.g., a climate simulation model) 

into small ones (e.g., ocean model, atmospheric model). We focus on 

domain decomposition here, as it is the typical approach used for 

processing geospatial big data with HPC. 

Geospatial data, regardless of source or type, can be abstracted as a five-

dimensional (5D) tuple < X, Y, Z, T, V>, where X, Y, Z denotes a location 

in three dimensional space, T denotes time, and V denotes a variable 

(spatial phenomenon), such as the land surface temperature observed at 

location X, Y, Z and time T. If a dimension has only one value, it is set to 

1 in the tuple. For example, NASA’s Modern-Era Retrospective analysis 

for Research and Applications (MERRA) hourly land surface data can be 

represented as <X, Y, 1, T, V> since there are no vertical layers. Based on 

this abstraction, domain decomposition can be applied to different 

dimensions of the data, resulting in different decompositions, such as 1D 

decomposition, 2D decomposition, and so on (Figure 3). The total number 

of subdomains produced by a domain decomposition equals the product of 

the number of slices of each domain.  
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Figure 3. Illustration of domain decomposition. (a) 1D decomposition, 

decomposing any dimension of < X, Y, Z, T, V>; (b) 2D decomposition, 

decomposing any two dimensions of < X, Y, Z, T, V>; (c) 3D 

decomposition, decomposing any three dimensions of < X, Y, Z, T, V>. 

Spatial decomposition occurs when data along the spatial dimensions <X, 

Y, Z> are decomposed. 2D spatial decomposition along <X, Y> often 

utilizes the regular grid or a quadtree-based approach, though irregular 

decomposition has also been used (Widlund, 2009; Guan, 2009). Wang 

and Armstrong (2003), for example, developed a parallel inverse-distance-

weighted (IDW) spatial interpolation algorithm in an HPC environment 

using a quadtree-based domain decomposition approach. The quadtree was 

used to decompose the study area for adaptive load balancing. In a similar 

approach described by Guan, Zhang, and Clarke (2006), a spatially 

adaptive decomposition method was used to produce workload-oriented 

spatially adaptive decompositions. A more recent study by Li, Hodgson, 

and Li (2018) used a regular grid to divide the study area into many equal-

sized subdomains for parallel LiDAR data processing. The size of the grid 

cell is calculated based on the study area size and available computing 

resources to maximize load balancing. Like 2D spatial decomposition, 3D 

spatial decomposition often uses a regular cube or octree-based approach 

to create 3D subdomains (Tschauner and Salinas, 2006). For example, Li 

et al. (2013) processed 3D environmental data (dust storm data) in parallel 

in an integrated GPU and CPU framework by equally dividing the data 

into 3D cubes.  

Temporal decomposition decomposes data along the time dimension, 

which works well for time series data. Variable decomposition can be 

applied when a dataset contains many variables. For instance, MERRA 

land reanalysis data (MST1NXMLD) contains 50 climate variables that 

span from 1979 to the present with an hourly temporal resolution and a 

spatial resolution of 2/3 x 1/2 degree (Rienecker et al., 2011). In this case, 

the decomposition can be applied to the temporal dimension (T), the 

variable dimension (V), or both (T, V) (Li et al., 2015; Li et al., 2017).   

When conducting domain decomposition, we need to consider whether 

dependence exists among the subdomains—in other words, whether a 



11 

 

subdomain must communicate with others. For spatial decomposition, we 

need to check whether spatial dependence exists. For example, when 

parallelizing the IDW spatial interpolation algorithm using quadtree-based 

spatial decomposition, neighboring quads need to be considered (Wang 

and Armstrong, 2003). For some other operations, such as rasterizing 

LiDAR points, each subdomain can be processed independently without 

communicating with others (Li et al., 2018). For temporal decomposition, 

temporal dependence may need to be considered. For example, to extract 

the short- or long-term patterns from time series data requires considering 

temporal dependences in the decomposition (Asadi and Regan, 2019).  

Conversely, computing the global annual mean of an hourly climate 

variable does not require such consideration. 

Knowing whether to consider dependence when decomposing data helps 

us design more efficient decomposition methods because avoiding 

unnecessary communications among subdomains often leads to better 

performance (Li et al., 2018). The problem of spatial dependence can be 

solved in multiple ways as summarized in Zheng et al., (2018). Spatial and 

temporal buffering can be used in domain decomposition to prevent 

communication with neighboring subdomains. For example, Hohl, 

Delmelle, and Tang (2015) used spatiotemporal buffers to include adjacent 

data points when parallelizing the kernel density analysis.  

In addition to spatiotemporal dependence, the distribution of underlying 

data also needs special consideration for spatial and spatiotemporal domain 

decomposition because different data might pose different requirements 

for decomposition. For instance, while Hohl et al. (2018) decompose data 

that are distributed irregularly in all three dimensions, the data in 

Desjardins et al. (2018) are distributed irregularly in space, but regularly in 

time. As a result, different decomposition methods are used in the two 

examples for optimized performance.  

3.4 Task scheduling 

Task scheduling refers to distributing subtasks (subdomains) to concurrent 

computing units (e.g., CPU cores or computers) to be processed in parallel. 

Task scheduling is essential in HPC because the time spent to finish 
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subtasks has a direct impact on parallelization performance. Determining 

an effective task schedule depends on the HPC programming paradigms 

and platforms (e.g., MPI-based or Hadoop-based), the problems to be 

parallelized (e.g., data-intensive or computation-intensive), and the 

underlying computing resources (e.g., on-premise HPC cluster or on-

demand cloud-based HPC cluster). Regardless, two significant aspects 

must be considered to design efficient task scheduling approaches for 

geospatial big data processing: load balancing and data locality. 

Load balancing aims to ensure each computing unit receives a similar (if 

not identical) number of subtasks for a data processing job, so that each 

finishes at the same time. This is important because in parallel computing, 

the job’s finishing time is determined by the last finished task. Therefore, 

the number of subdomains and the workload of each should be considered 

along with the number of available concurrent computing units for load 

balancing. A load balancing algorithm can use static scheduling that either 

pre-allocates or adaptively allocates tasks to each computing unit (Guan, 

2009; Shook et al., 2016).  For example, Wang and Armstrong (2003) 

scheduled tasks based on the variability of the computing capacity at each 

computing site and the number of workloads used to partition the problem 

in a grid computing environment.  

While most big data processing platforms (such as Hadoop) have built-in 

load balancing mechanisms, they are not efficient when processing 

geospatial big data. Hadoop-based geospatial big data platforms, such as 

GeoSpark (Yu, Wu, and Sarwat, 2015) and SpatialHadoop (Eldawy and 

Mokbel, 2015), often provide customized load balancing mechanisms that 

consider the nature of spatial data. For example, Li et al. (2017) used a grid 

assignment algorithm and a grid combination algorithm to ensure each 

compute node received a balanced workload when processing big climate 

data using Hadoop. When processing big LiDAR data, Li et al. (2018) 

calculated the number of subdomains to be decomposed based on the data 

volume and number of compute nodes in a cluster. In all cases, the 

subdomains should be comparably sized to better balance the load. In a 

cloud-based HPC environment, load balancing can also be achieved by 
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automatically provisioning computing resources (e.g., add more compute 

nodes) based on the dynamic workload (Li et al., 2016). 

Data locality refers to how close data are to their processing locations; a 

shorter distance indicates better data locality (Unat et al., 2017). Good data 

locality requires less data movement during parallel data processing and 

thus leads to better performance. Discussing data locality makes little 

sense in traditional HPC since it uses shared-disk architecture (section 

2.1). A shared-disk architecture separates compute nodes and storage, thus 

requiring data movement. However, data locality is important for 

geospatial big data processing (Guo, Fox, and Zhou, 2012) because big 

data platforms (e.g., Hadoop) use shared-nothing storage; moving massive 

data among the compute nodes over the network is costly. 

To archive data locality, the task scheduler is responsible for assigning a 

subdomain (data subset) to the compute node where the subdomain is 

located or stored. Thus, the task scheduler must know a subdomain’s 

storage location, which can be realized by building an index to link data 

location in the cluster space to other spaces—geographic, variable, and file 

spaces. For instance, with a spatiotemporal index recording of the compute 

node on which a climate variable is stored, 99% of the data grids can be 

assigned to the compute nodes where the grids are stored, significantly 

improving performance (Li et al., 2017). In a LiDAR data processing study 

(Li et al., 2018), a spatial index was used to record a data tile’s location in 

both the cluster and geographic spaces. Each subdomain was then assigned 

to the node where most of the tiles were stored. It is worth noting that 

besides load balancing and data locality, other factors such as computing 

and communication costs should also be considered for task scheduling.   

4. Existing Platforms for Geospatial Big Data Handling with HPC 

There are many existing platforms for handling geospatial big data with 

HPC. These offer various programming models and languages, software 

libraries, and application programming interfaces (APIs). Here I briefly 

review some of the popular platforms by summarizing them into four 

general categories.  

4.1 General-purpose platforms  
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General-purpose parallel programming platforms are designed to handle 

data from different domains. Open MPI, for example, is an open source 

MPI implementation for traditional HPC systems (Gabriel et al., 2004). 

Another open source HPC software framework is HTCondor (known as 

Condor before 2012), which supports both MPI and Parallel Virtual 

Machine (Thain, Tannenbaum, and Livny, 2005). Different from Open 

MPI and HTCondor, CUDA is a parallel computing platform designed to 

harness the power of the graphics processing unit (GPU) (Nvidia, 2011). 

GPU has a transformative impact on big data handling. A good example of 

how GPU enables big data analytics in the geospatial domain can be found 

in Tang, Feng and Jia (2015).  

Entering the big data world, Hadoop, an open source platform, is designed 

to handle big data using a shared-nothing architecture consisting of 

commodity computers (Taylor, 2010). With Hadoop, big data is stored in 

the Hadoop distributed files system (HDFS) and is processed in parallel 

using the MapReduce programming model introduced by Google (Dean 

and Ghemawat, 2008). However, Hadoop is a batch processing framework 

with high latency and does not support real-time data processing. Apache 

Spark, an in-memory distributed computing platform using the same 

shared-nothing architecture as Hadoop, overcomes some of Hadoop’s 

limitations (Zaharia et al., 2016).  

4.2 Geospatial-oriented platforms 

As general-purpose platforms are not designed for handling geospatial 

data, efforts have been made to adapt existing parallel libraries or 

frameworks for them. Domain decomposition, spatial indexing, and task 

scheduling are often given special considerations when building 

geospatial-oriented programming libraries. One outstanding early work is 

GISolve Toolkit (Wang, 2008), which aims to enhance large geospatial 

problem-solving by integrating HPC, data management, and visualization 

in cyber-enabled geographic information systems (CyberGIS) environment 

(Wang, 2010; Wang et al., 2013). Later, Guan (2009) introduced an open 

source general-purpose parallel-raster-processing C++ library using MPI. 

More recently, Shook et al. (2016) developed a Python-based library for 
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multi-core parallel processing of spatial data using a parallel cartographic 

modeling language (PCML).  

In the big data landscape, an array of open source geospatial platforms has 

been developed based on Hadoop or Hadoop-like distributed computing 

platforms, including, for example, HadoopGIS (Wang et al., 2011), 

Geotrellis (Kini and Emanuele, 2014), SpatialHadoop (Eldawy and 

Mokbel, 2015), GeoSpark (Yu, Wu, and Sarwat 2015), GeoMesa (Hughes 

et al., 2015), EarthServer (Baumann et al., 2016), GeoWave (Whitby, 

Fecher and Bennight, 2017), and St_Hadoop (Alarabi, Mokbel, and 

Musleh, 2018). While not open source, Google Earth Engine (Gorelick et 

al., 2017) is a powerful and planetary-scale geospatial big data platform for 

parallel processing and analysis of petabytes of satellite imagery and other 

geospatial datasets. 

4.3 Query processing 

Most general-purpose and geospatial-oriented programming libraries allow 

users to develop parallel data processing programs based on the APIs. 

Computer programming or scripting is generally needed, though some 

platforms offer high-level interfaces to ease development. Query 

processing falls into another category of big data processing that leverages 

structured query language for programming. Query processing, especially 

SQL-based, has gained noticeable popularity in the big data era, partly 

because it balances the usability and flexibility of a big data processing 

platform: more flexible than a static graphic user interface with fixed 

functions but less complicated than programming libraries (Li et al., 2019). 

For raster data processing, the data can be naturally organized as data 

cubes (an array database), and traditional data cube operations—such as 

roll-up, drill-down, and slice—can be performed in parallel in an HPC 

environment. Examples of such platforms include RasDaMan (Baumann et 

al.,1999), SciDB (Cudré-Mauroux et al., 2009), and EarthDB (Planthaber, 

Stonebraker, and Frew, 2012). More recently, large scale raster data query 

processing has been investigated using Hadoop Hive and Apache Spark. Li 

et al. (2017), for example, introduced a query analytic framework to 

manage, aggregate, and retrieve array-based data in parallel with intuitive 
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SQL-style queries (HiveSQL). Based on the query analytical framework, 

an online scalable visual analytical system called SOVAS (Figure 4) was 

developed for query processing of big climate data using an extended-SQL 

as the query language (Li et al., 2019). Instead of using Hadoop, Hu et al. 

(2018) developed an in-memory big climate data computing framework 

based on the Spark platform that uses Spark SQL for query processing.  

 

Figure 4. SQL-based query analytics of big climate data with SOVAS 

(https://gidbusc.github.io/SCOVAS) 

PostGIS is a good example demonstrating how SQL works for vector data 

query processing (Ramsey, 2005). However, it falls short in handling 

geospatial big data due to its limited scalability. Esri tools for Hadoop 

(Esri, 2013) is one early effort to build a scalable big-vector data query 

processing framework based on Hadoop. In this framework, HiveSQL is 

the query language, and a suite of user-defined functions (UDFs) 

developed on top of the Esri Geometry API support various spatial 

operations, such as point-in-polygon and overlay. Later, Apache 

SparkSQL was adapted to develop a number of large-scale vector data 

query processing systems, such as GeoMesa SparkSQL (Kini and 

Emanuele, 2014), GeoSpark SQL (Huang et al., 2017), and Elcano 

(Engélinus and Badard, 2018). In contrast to these open source systems, 

Google BigQuery GIS offers a commercial tool that performs spatial 

operations using standard SQL to analyze big vector data (Google, 2019).  
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4.4 Workflow-based systems 

Scientific workflow treats the data processing task as a pipeline consisting 

of a series of connected operations. For big data processing, an operation 

can be a parallel data processing task powered by HPC. There are many 

general-purpose scientific workflow systems developed to work in a 

distributed computing environment, including Kepler (Altintas et al., 

2004), Triana (Taylor et al., 2005), Taverna (Hull et al., 2006), and 

VisTrails (Callahan et al., 2006). Since these workflow systems are not 

designed to work with geospatial data, efforts have been made to adapt 

them to build workflows for geospatial data processing (e.g., Jaeger et al., 

2005; Zhang et al., 2006; Bouziane et al., 2008).  

Geospatial service chaining is a service-based workflow approach for 

geospatial data processing in which each operation is provided as a web 

service (Yue, Gong, and Di, 2010; Gong et al., 2012). The web services 

used in the service chain are often based on the Open Geospatial 

Consortium’s (OGC) standardized spatial web services for interoperability, 

including its Web Processing Service (WPS) for data processing, Web 

Feature Service (WFS) for vector data manipulation, Web Coverage 

Service (WCS) for raster data manipulation, and Web Mapping Service 

(WMS) for data visualization (Li et al., 2011). Over the past few years, 

studies have developed geospatial processing services running in the 

cloud-based HPC environment (Yoon et al., 2015; Tan et al., 2015; 

Baumann et al., 2016; Zhang et al., 2017; Lee and Kim, 2018).   

A cloud-based HPC brings several advantages for geoprocessing workflow 

with big data, such as on-demand computing resource provision and high 

scalability. For example, Li et al. (2015) developed a cloud-based 

workflow framework for parallel processing of geospatial big data (Figure 

5). In this framework, computing resources, such as Hadoop computing 

clusters and MaaS clusters (Li al., 2017), can be provisioned as needed 

when running the workflow. 
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Figure 5. Geospatial big data handling using a cloud-based and 

MapReduce-enabled workflow   

5. Directions for Further Research  

5.1 Towards a discrete global reference framework with HPC 

Heterogeneity has for a long time been a challenge in traditional geospatial 

data handling. Heterogeneity manifests in multiple aspects, including data 

collection approaches (e.g., remote sensing, land surveying, GPS), data 

models and formats (e.g., raster, vector), spatiotemporal scales/resolutions 

(e.g., from local to regional to world, from centimeters to meters to 

kilometers). Geospatial big data further creates heterogeneity through the 

ubiquitous location-based sensors collecting data from a broad range of 

sectors. Such heterogeneity makes it challenging to integrate and fuse 

geospatial big data with HPC. Most current HPC systems and studies 

handle a specific type of geospatial data with specific parallel algorithms, 

partly due to the lack of a referencing framework that can efficiently store, 

integrate, and manage the data in a way optimized for data integration and 

parallel processing.    

While traditional coordinate systems (such as the system based on latitude 

and longitude) have been successful as a frame of reference, a relatively 

new framework called the discrete global grid system (DGGS) is believed 

to work better in managing and processing the heterogeneous geospatial 
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big data associated with the curved surface of the Earth (Sabeur et al., 

2019). DGGS represents “the Earth as hierarchical sequences of equal area 

tessellations on the surface of the Earth, each with global coverage and 

with progressively finer spatial resolution” (OGC, 2017). It aims to 

provide a unified, globally consistent reference framework to integrate 

heterogeneous spatial data—such as raster, vector, and point cloud—with 

different spatiotemporal scales and resolutions. The design of DGGS 

makes it natively suitable for parallel processing with HPC, as the data that 

it stores and manages has already been decomposed into discrete 

subdomains. However, currently most HPC-based spatial data processing 

research and tools remain based on traditional reference frameworks. 

Future research is needed to investigate spatiotemporal indexes, parallel 

algorithms, and big data computing platforms in the context of DGGS and 

HPC.  

5.2 Towards fog computing with HPC 

Fog computing is an emerging computing paradigm that resides between 

smart end-devices and traditional cloud or data centers (Iorga et al., 2017). 

It aims to process big data generated from distributed IoT devices (also 

called edge devices) in real time to support applications such as smart 

cities, precision agriculture, and autonomous vehicles. In traditional IoT 

architecture, the limited computing power of edge devices means the data 

they generate are directly uploaded to the cloud with no or very limited 

processing. This creates noticeable latency because the data are often far 

away from the cloud (poor data locality). Fog computing provides a 

middle computing layer – a cluster of fog nodes– between the edge devices 

and cloud. Since the fog nodes have more computing power and are close 

to the edge devices with low network latency (good data locality), edge 

device data can be quickly transferred to them for real-time filtering and 

processing. The filtered data can then be transferred to the cloud as needed 

for data mining and analysis using Hadoop-like systems, artificial 

intelligence, or traditional HPC. 

IoT generates geospatial big data, thanks to the ubiquitous location-based 

sensors on edge devices. In this sense, real-time geospatial data processing 

is critical in fog computing. HPC should be researched and utilized in fog 
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computing to deliver real-time responses for decision making (e.g., by an 

autonomous vehicle) from the following aspects: (i). Geospatial data 

processing in the cloud: As cloud computing plays an important role in fog 

computing, research on how to efficiently transfer data from edge devices 

to the cloud and to process geospatial data in parallel in a cloud 

environment is greatly needed. (ii). Geospatial data processing on the fog 

node: Since fog computing aims to provide real-time data processing, 

research is needed to design parallel computing algorithms and platforms 

that better utilize the embedded, mobile, and low-end fog node computers. 

(iii). Geospatial data processing in the fog cluster: Fog nodes are 

connected with a high-speed, low-latency network, which can form a high 

performance computing cluster. Unlike traditional computing clusters, 

such nodes might be mobile within a complex networking environment. 

For example, if autonomous cars are deployed as fog nodes, we could use 

those parked in a garage as a computing cluster. The challenges include, 

for example, how to efficiently form a computing cluster considering the 

spatial locations of fog nodes, how to use domain decomposition to assign 

the distributed edge devices to fog nodes, and how to develop smart 

scheduling algorithms to assign data processing tasks to appropriate nodes. 

 

5.3 Towards geospatial artificial intelligence with HPC 

Artificial intelligence (AI) is a computer science field that uses computers 

to mimic human intelligence for problem-solving (Minsky, 1961). Deep 

learning, a branch of machine learning in AI, has made significant progress 

in recent years with a broad range of applications, such as natural language 

processing and computer visions (Chen and Lin, 2014; LeCun, Bengio, 

and Hinton, 2015). Unlike traditional machine learning, in which 

parameters of an algorithm (e.g., support vector machine) are configured 

by experts, deep learning determines these parameters by learning the 

patterns in a large amount of data based on artificial neural networks.  

Geospatial artificial intelligence (GeoAI) uses AI technologies like deep 

learning to extract meaningful information from geospatial big data 

(VoPham et al., 2018). GeoAI has had success across a broad range of 

applications, especially in remote sensing, such as image classification (Hu 
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et al., 2015), object detection (Cheng et al., 2016), and land cover mapping 

(Kussul et al., 2017; Ling and Foody, 2019). While GeoAI is a promising 

solution for geospatial big data challenges, geospatial big data is likewise 

critical in training GeoAI’s complex deep neural networks (DNNs) and is 

the catalyst that has stimulated deep learning advancements in recent 

years. As highlighted by Jeff Dean (2016) of the Google Brain team, an 

important property of neural networks is that results improve when using 

more data and computations to train bigger models. This is where high 

performance computing comes into play.  

Tech giants such as Google, Microsoft, and IBM, have been leading the 

development of large-scale AI platforms that run on big computing 

clusters. Most current GeoAI research in the literature, however, is 

conducted on single-node computers or workstations using relatively small 

amounts of data to train the model. For example, Zhang et al. (2018) 

conducted an object-based convolutional neural network for urban land use 

classification based on only two 0.5 m resolution images of about 6,000 × 

5,000 pixels. A recent review reveals that 95.6% of published research on 

remote sensing land-cover image classification covers less than 300 ha and 

uses small training sets (Ma et al., 2017). One potential reason is the lack 

of geospatial-oriented deep learning platforms available for academic 

research that support parallelization in a distributed environment. For 

example, DeepNetsForEO, an open source deep learning framework based 

on the SegNet architecture for semantic labeling of Earth observation 

images (Badrinarayanan et al., 2017; Audebert, Saux, and Lefèvre, 2018), 

only supports reading the entire training set into the computer memory, 

which is not scalable to large datasets. 

More research, from the geospatial big data and engineering perspectives, 

is urgently needed to develop high-performance, scalable GeoAI 

frameworks and platforms that take full advantage of geospatial big data to 

build bigger and better models. This can be achieved by integrating 

general-purpose deep learning platforms, such as TensorFlow (Abadi et 

al., 2016), Caffe (Jia et al., 2014), and Apache SINGA (Ooi et al, 2015), 

with HPC technologies in the geospatial context, similar to adopting 

general-purpose big data platforms in Hadoop to handle geospatial big 
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data. Specific research directions might include the development of 

efficient spatiotemporal indexing, domain decomposition, and scheduling 

approaches to parallelize a deep convolutional neural network in a 

distributed HPC environment.  

6. Summary  

Geospatial big data is playing an increasingly important role in the big data 

era. Effectively and efficiently handling geospatial big data is critical to 

extracting meaningful information for knowledge discovery and decision 

making, and HPC is a viable solution. This chapter began with a brief 

introduction of geospatial big data and its sources and then discussed 

several key components of using HPC to handle geospatial big data. A 

review of current tools was then provided from four different aspects. 

Lastly, three research directions were discussed in the context of HPC and 

geospatial big data. 

HPC has been used for geospatial data handling for almost two decades 

(Armstrong, 2000; Clarke, 2003; Wang and Armstrong, 2003) and is 

becoming more important in tackling geospatial big data challenges. 

Geospatial big data, in turn, brings new challenges and opportunities to 

HPC. It is evident that the interweaving of geospatial big data, cloud 

computing, fog computing, and artificial intelligence is driving and 

reshaping geospatial data science. High performance computing, with its 

fundamental divide-and-conquer approach to solving big problems faster, 

will continue to play a crucial role in this new era.  
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